The Phase Relations in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Ga}_{\mathbf{2}} \mathrm{ZnO}_{4}-\mathbf{Z n O}$ System at $1350^{\circ} \mathrm{C}$

MASAKI NAKAMURA, NOBORU KIMIZUKA,* and TAKAHIKO MOHRI

National Institute for Research in Inorganic Materials, I-1 Namiki, Tsukuba-shi, Ibaraki-ken, 305 Japan

Received November 7, 1990; in revised form February 28, 1991

Abstract

The phase relations in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Ga}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system at $1350^{\circ} \mathrm{C}$ are determined by a classical quenching method. In this system there exist an $\left(\mathrm{InGaO}_{3}\right)_{2} \mathrm{ZnO}$ phase with $\mathrm{Yb}_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$-type structure and homologous phases with solid solution ranges $\mathrm{In}_{1.33} \mathrm{Ga}_{0.67} \mathrm{O}_{3}(\mathrm{ZnO})-\mathrm{InGaO}_{3}(\mathrm{ZnO})-\mathrm{In}_{0.92} \mathrm{Ga}_{1.08} \mathrm{O}_{3}(\mathrm{ZnO})$, $\mathrm{In}_{1.68} \mathrm{Ga}_{0.32} \mathrm{O}_{3}(\mathrm{ZnO})_{2}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{2}-\mathrm{In}_{0.68} \mathrm{Ga}_{1.32} \mathrm{O}_{3}(\mathrm{ZnO})_{2}, \quad \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{3}-\mathrm{InGaO}_{3}\left(\mathrm{ZnO}_{3}-\mathrm{In}_{0.54} \mathrm{Ga}_{1.46} \mathrm{O}_{3}\right.$ $(\mathrm{ZnO})_{3}, \quad \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{4}-\mathrm{InGaO}_{3}\left(\mathrm{ZnO}_{4}-\mathrm{In}_{0.46} \mathrm{Ga}_{1.54} \mathrm{O}_{3}(\mathrm{ZnO})_{4}, \quad \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{5}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{5}-\mathrm{In}_{1-x}\right.$ $\mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{5}(0.68 \leq x \leq 0.72), \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{6}-\ln \mathrm{GaO}_{3}(\mathrm{ZnO})_{6}-\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{6}(0.68 \leq x \leq 0.79)$, $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{7}-\operatorname{lnGaO} 3(\mathrm{ZnO})_{7}-\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{7}(0.70 \leq x \leq 0.74), \quad \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{8}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{8}-$ $\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{8}(0.60 \leq x \leq 0.68), \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{9}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{9}-\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{9}(0.56 \leq x \leq$ $0.72), \quad \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{10}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{10}-\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{10} \quad(0.47 \leq x \leq 0.67), \quad \mathrm{In}_{2} \mathrm{O}_{3}$ $(\mathrm{ZnO})_{11}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{11}-\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{11}(0.57 \leq x \leq 0.64), \quad \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{12}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{12}{ }^{-}$ $\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{12}(x \leq 0.64)$, and $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{13}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{13}-\ln _{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{13}(0.49 \leq x \leq$ $0.75)$ in which $\operatorname{InGaO}_{3}(\mathrm{ZnO})_{m}(m=1-13)$ is isostructural with $\operatorname{InFeO}{ }_{3}(\mathrm{ZnO})_{m}$. ZnO has a solid solution range, $\mathrm{Zn}_{1-x} \mathrm{Ga}_{2 x} \mathrm{O}_{1+2 x}(x=0-0.094)$ to the direction of $\mathrm{Ga}_{2} \mathrm{ZnO}_{4}$, and $\mathrm{Ga}_{2} \mathrm{ZnO}_{4}$ has a solid solution range, $\mathrm{Ga}_{2-x} \mathrm{In}_{x} \mathrm{ZnO}_{4}(x=0-0.128(4))$ to the direction of $\mathrm{InGaO} 3(\mathrm{ZnO})$. A comparison between the phase relations in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Ga}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system and those in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Fe}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system is made, and the crystal chemical effects of Fe (III) and $\mathrm{Ga}($ III) cations upon the phase relations in these systems are discussed. © 1991 Academic Press, inc.

Introduction

It is of importance for solid state scientists to know the relations between both the crystal stability and the structures of inorganic solid oxides and their constituent cation elements. So far, we have studied the phase relations in the $\mathrm{In}_{2} \mathrm{O}_{3}-A_{2} B \mathrm{O}_{4}-B \mathrm{O}$ systems ($A: \mathrm{Fe}$ or $\mathrm{Ga}, B: \mathrm{Cu}$ or Co) at elevated temperatures, and reported the relation between the crystal stability and structures of $\operatorname{In} A_{3}(B O)$ in these ternary systems and the components of both $A_{2} \mathrm{O}_{3}$ and $B \mathrm{O}$ com-

[^0]pounds (I). In a previous paper (2), we have reported the phase relations in the In_{2} $\mathrm{O}_{3}-\mathrm{Fe}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system at $1350^{\circ} \mathrm{C}$ in which there were homologous phases with solid solution ranges, $\mathrm{In}_{1+x} \mathrm{Fe}_{1-x} \mathrm{O}_{3}(\mathrm{ZnO})-$ $\operatorname{InFeO} 3(\mathrm{ZnO}), \mathrm{In}_{1+x} \mathrm{Fe}_{1-x} \mathrm{O}_{3}(\mathrm{ZnO})_{2}-\mathrm{InFeO}_{3}$ $(\mathrm{ZnO})_{2}-\mathrm{In}_{1-x} \mathrm{Fe}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{2}, \quad \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{Zn}$ $\mathrm{O})_{m}-\mathrm{InFeO}_{3}(\mathrm{ZnO})_{m}-\mathrm{In}_{1-x} \mathrm{Fe}_{1+x} \mathrm{O}_{3} \quad(\mathrm{ZnO})_{m}$ ($m=3-11$) and $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}-\mathrm{InFeO}_{3}$ $(\mathrm{ZnO})_{m}-\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}(m \geq 12)$ having layered structures. The crystal structural models of $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$ and $\mathrm{InFeO}_{3}(\mathrm{ZnO})_{m}$ were estimated by powder X-ray diffractometry and high resolution electron microscopy (3-5), and space groups of $\mathrm{InFeO}_{3}(\mathrm{ZnO})_{m}$

Fig. 1. The crystal structural models of $\mathrm{LuFeO}_{3}(\mathrm{ZnO})$ in $\mathrm{A}, \mathrm{LuFeO}_{3}(\mathrm{ZnO})_{4}$ in $\mathrm{B}, \mathrm{LuFeO}_{3}(\mathrm{ZnO})_{5}$ in C , and $\mathrm{Yb}_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$ in $\mathrm{D}: \mathrm{A}, \mathrm{B}$, and C represent three kinds of triangular lattices. M sites are occupied by Fe and/or Zn ions for $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}$, and Fe for $\mathrm{Yb}_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$. O , Lu or Yb ion; \boldsymbol{O} ion; O, O ion.
($m=$ odd) and $\mathrm{InFeO}_{3}(\mathrm{ZnO})_{m}(m=$ even) are $R \overline{3} m$ and $\mathrm{Pb}_{3} / m m c$, respectively. The structural analyses showing single crystal $\mathrm{YbFe}_{2} \mathrm{O}_{4}(6)$ and $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}(m=1,4$, 5 , and 6) being isostructural with $\operatorname{InFeO}(\mathrm{Z}$ $\mathrm{nO})_{m}$ were performed by Isobe et al. (7, 8), and their crystal structural models of $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}(m=1,4$, and 5) are shown in Figs. 1A, 1B, and 1C, respectively. In the present work, we report the phase relations in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Ga}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system at $1350^{\circ} \mathrm{C}$ which were determined by a classical quenching method, and compare the phase relations in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Ga}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system with those in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Fe}_{2}$ $\mathrm{ZnO}_{4}-\mathrm{ZnO}$ system, and discuss the crystal chemical effects of Ga (III) and Fe (III) cations upon the phase relations in these systems.

Experimental

Experimental method and starting compounds except $\mathrm{Ga}_{2} \mathrm{O}_{3}$ powder have been described elsewhere (2). $\mathrm{Ga}_{2} \mathrm{O}_{3}(99.99 \%$) powder was heated at $900^{\circ} \mathrm{C}$ for 1 day in air prior
to mixing the starting compounds. Analyses by X-ray powder and electron diffractometry and scanning electron microscopy (SEM) observations were applied for samples obtained. Although chemical reactions between the Pt tubes and the samples were checked visually, no detectable reactions were observed. Lattice constants were calculated by means of the least squares method.

Results and Discussion

1. The Phase Relations in the

$\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Ga}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ System at $1350^{\circ} \mathrm{C}$
Figure 2 A shows the phase relations in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Ga}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system at $1350^{\circ} \mathrm{C}$. The detailed phase relations in the vicinity of ZnO phase are shown in Fig. 2B. Mixing ratios of the starting compounds, heating periods, and phases obtained are given in Table I. In the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{ZnO}$ system there are $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}(m \geq 3)$ phases. Both the thermochemical stability and the crystal structures of these phases have been discussed in the literature (2-4). In the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Ga}_{2} \mathrm{ZnO}_{4}$

Fig. 2. The phase relations in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Ga}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system at $1350^{\circ} \mathrm{C}$. $(p, q, r$) indicates the composition (in mole fraction) of $\mathrm{In}_{2} \mathrm{O}_{3}, \mathrm{Ga}_{2} \mathrm{O}_{3}$, and ZnO . Symbols and numbers in the figures are as follows: $\mathrm{A}_{1},(0.332,0.168,0.500) ; \mathrm{A}_{2},(0.230,0.270,0.500) ; \mathrm{A}_{3},(0.032,0.468,0.500) ; \mathrm{A}_{4},(0.018,0.482$, $0.500) ; \mathrm{A}_{5},(0.008,0.492,0.500) ; \mathrm{A}_{6},(0.006,0.494,0.500) ; \mathrm{A}_{7},(0.004,0.496,0.500) ; \mathrm{A}_{8},(0.000,0.500$, $0.500) ; \mathrm{B}_{1},(0.279,0.054,0.667) ; \mathrm{B}_{2},(0.215,0.118,0.667) ; \mathrm{B}_{3},(0.141,0.192,0.667) ; \mathrm{B}_{4},(0.113,0.220$, $0.667) ; C_{1},(0.250,0.000,0.750) ; C_{2},(0.207,0.043,0.750) ; C_{3},(0.082,0.168,0.750) ; C_{4},(0.067,0.183$, $0.750) ; \mathrm{D}_{1},(0.200,0.000,0.800) ; \mathrm{D}_{2},(0.050,0.150,0.800) ; \mathrm{D}_{3},(0.046,0.154,0.800) ; \mathrm{E}_{1},(0.167,0.000$, $0.833) ; \mathrm{E}_{2},(0.031,0.136,0.833) ; \mathrm{E}_{3},[(0.027,0.140,0.833)-(0.023,0.144,0.833)] ; \mathrm{F}_{1},(0.143,0.000$, $0.857) ; \mathrm{F}_{2},[(0.029,0.114,0.857)-(0.024,0.119,0.857)] ; \mathrm{F}_{3},[(0.029,0.114,0.857)-(0.024,0.119,0.857)]$; $\mathrm{F}_{4},[(0.023,0.120,0.857)-(0.015,0.128,0.857)] ; \mathrm{G}_{1},(0.125,0.000,0.875) ; \mathrm{G}_{2},[(0.031,0.094$, $0.875)-(0.027,0.098,0.875)] ; \mathrm{G}_{3},[(0.019,0.106,0.875)-(0.016,0.109,0.875)] ; \mathrm{H}_{1},(0.111,0.000,0.889)$; $\mathrm{H}_{2},[(0.031,0.080,0.889)-(0.026,0.085,0.889)] ; \mathrm{H}_{3},[(0.022,0.089,0.889)-(0.018,0.093,0.889)] ; \mathrm{I}_{1}$, $(0.100,0.000,0.900) ; \mathrm{I}_{2},[(0.034,0.066,0.900)-(0.022,0.078,0.900)] ; \mathrm{I}_{3},[(0.022,0.078,0.900)-(0.019$, $0.081,0.900)] ; \mathrm{J}_{1},(0.091,0.000,0.909) ; \mathrm{J}_{2},[(0.028,0.063,0.909)-(0.024,0.067,0.909)] ; \mathrm{J}_{3},[(0.024$, $0.067,0.909)-(0.015,0.076,0.909)] ; \mathrm{K}_{1},(0.083,0.000,0.917) ; \mathrm{K}_{2},[(0.018,0.065,0.917)-(0.015,0.068$, $0.917)] ; \mathrm{L}_{1},(0.077,0.000,0.923) ; \mathrm{L}_{2},[(0.038,0.038,0.924)-(0.014,0.063,0.923)] ; \mathrm{M}_{1},(0.071,0.000$, $0.929) ; \mathrm{M}_{2},[(0.018,0.053,0.929)-(0.009,0.062,0.929)] ; \mathrm{N}_{1},(0.063,0.000,0.937) ; \mathrm{O}_{1},(0.048,0.000$, $0.952) ; \mathrm{P}_{1},(0.020,0.000,0.980) ; \mathrm{P}_{2},(0.010,0.010,0.980) ; \mathrm{P}_{3},(0.000,0.020,0.980) ; \mathrm{Q}_{1},(0.010,0.000$, $0.990) ; \mathrm{Q}_{2},(0.005,0.005,0.990) ; \mathrm{Q}_{3},(0.000,0.010,0.990) ; \mathrm{R}_{1},(0.000,0.093,0.907) ; \mathrm{R}_{2},[(0.000$, $0.091,0.909)-(0.000,0.089,0.911)] ; \mathrm{R}_{3},[(0.000,0.076,0.924)-(0.000,0.074,0.926)] ; \mathrm{R}_{4},[(0.000,0.074$, $0.926)-(0.000,0.069,0.931)] ; \mathrm{R}_{5},(0.000,0.069,0.931) ; \mathrm{R}_{6},[(0.000,0.069,0.931)-(0.000,0.068,0.932)]$; $\mathrm{S}_{\mathrm{I}},(0.333,0.333,0.333)$.
system, there exists one binary phase, (In$\left.\mathrm{GaO}_{3}\right)_{2} \mathrm{ZnO}$ (9), with $\mathrm{Yb}_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$-type crystal structure (10) [See Fig. 1D.], and the ranges of solid solutions of $\mathrm{In}_{2} \mathrm{O}_{3}$ were observed for the volume changes of the unit cell. The
lattice constants of the $\operatorname{In}_{2} \mathrm{O}_{3}$ phase, which is in equilibrium with various phases, are shown in Fig. 3. In the $\mathrm{Ga}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system, we concluded, there existed no binary compound, but a solid solution of the ZnO
phase, $\mathrm{Zn}_{1-x} \mathrm{Ga}_{2 x} \mathrm{O}_{1+2 x}(x=0-0.093)$ was detected. The ZnO phase (at $x=0$) has a wurtzite structure (11), but the crystal structure of the solid solution containing $\mathrm{Ga}_{2} \mathrm{O}_{3}$ distorts from the wurtzite structure to a structure with a lower symmetry with increase in x. (Hereafter, this phase will be called the distorted wurtzite phase.) The relation between the Bragg's angle corresponding to $2 \theta^{\circ}$ of the 002 reflection of wurtzite structure (using $\mathrm{Cu} K \alpha$ radiation) and $\mathrm{Ga}_{2} \mathrm{O}_{3}$ concentration in the distorted wurtzite phase is given in Fig. 4. Since the 002 diffraction peak of wurtzite structure does not split into two or more peaks in the distorted wurtzite phase, we could choose this diffraction angle as a "standard figure" for determining the solid solution range of the distorted wurtzite phase.

X-ray powder diffraction data for the phase $\mathrm{Zn}_{1-x} \mathrm{Ga}_{2 x} \mathrm{O}_{1+2 x}(x=0.093)$ which coexists with $\mathrm{Ga}_{2} \mathrm{ZnO}_{4}$ is shown in Fig. 5 and Table II. Comparing with ZnO (wurtzite structure) in Fig. 5, we could easily conclude that this phase has a distorted wurtzite structure. The structure of the distorted wurtzite is rather complicated and no crystal structure analysis for this phase was performed; however, we can reasonably consider that the cations of both $\mathrm{Zn}(\mathrm{II})$ and Ga (III) should occupy the tetrahedral site in this distorted wurtzite phase. On the other hand, near the ZnO phase in the $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{ZnO}$ system at $1350^{\circ} \mathrm{C}$ there exists $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$ ($m \geq 12$) having $\operatorname{InFeO}_{3}(\mathrm{ZnO})_{m}$-type structures in which half of the Fe ions are considered to be in an octahedral site formed by oxygen ions (2). Isobe reports that the crystal system of $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{9}$ is slightly deformed from rhombohedral to monoclinic (15).

No solid solution of the spinel phase to the direction of the distorted wurtzite phase existed, since no volume difference of the unit cells was detected between stoichiometric $\mathrm{Ga}_{2} \mathrm{ZnO}_{4}$ in a single phase state and that in equilibrium with the distorted wurtz-
ite phase. The lattice constant of $\mathrm{Ga}_{2} \mathrm{ZnO}_{4}$ is $a=0.8331(1)$ (nm) [JCPDS card No. 381240 shows $a=0.83349(1)(\mathrm{nm})$]. Our main purpose is in the area of the layered compounds, so we did not investigate the details of the spinel phase region so intensively as in the layered compounds area.

In the ternary system $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Ga}_{2} \mathrm{Zn}$ $\mathrm{O}_{4}-\mathrm{ZnO}$, there exist $\mathrm{In}_{1.33} \mathrm{Ga}_{0.67} \mathrm{O}_{3}(\mathrm{ZnO})-$ $\mathrm{InGaO} 3(\mathrm{ZnO})-\mathrm{In}_{0.92} \mathrm{Ga}_{1.08} \mathrm{O}_{3}(\mathrm{ZnO}), \quad \mathrm{In}_{1.68}$ $\mathrm{Ga}_{0.32} \mathrm{O}_{3}(\mathrm{ZnO})_{2}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{2}-\mathrm{In}_{0.68} \mathrm{Ga}_{1.32}$ $\mathrm{O}_{3}(\mathrm{ZnO})_{2}, \quad \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{3}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{3}-$ $\mathrm{In}_{0.54} \mathrm{Ga}_{1.46} \mathrm{O}_{3}(\mathrm{ZnO})_{3}, \quad \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{4}-\mathrm{InGaO}_{3}$ $(\mathrm{ZnO})_{4}-\mathrm{In}_{0.46} \mathrm{Ga}_{1.54} \mathrm{O}_{3}\left(\mathrm{ZnO}_{4}, \quad \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{5}-\right.$ $\mathrm{InGaO}_{3}(\mathrm{ZnO})_{5}-\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{5} \quad(0.68$ $\leq x \leq 0.72), \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{6}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{6}-$ $\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{6}(0.68 \leq x \leq 0.79)$, $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{7}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{7}-\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}$ $(\mathrm{ZnO})_{7}(0.70 \leq x \leq 0.74), \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{8}-$ $\mathrm{InGaO}_{3}(\mathrm{ZnO})_{8}-\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{8}(0.60 \leq$ $x \leq 0.68), \quad \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{9}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{9}-$ $\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{9}(0.56 \leq x \leq 0.72)$, $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{10}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{10}-\mathrm{In}_{1-x} \mathrm{Ga}_{1+x}$ $\mathrm{O}_{3}(\mathrm{ZnO})_{10}(0.47 \leq x \leq 0.67), \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{11}-$ $\mathrm{InGaO}_{3}(\mathrm{ZnO})_{11}-\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{11}(0.57$ $\leq x \leq 0.64), \quad \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{12}-\mathrm{InGaO}{ }_{3}$ $(\mathrm{ZnO})_{12}-\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{12} \quad(x \leq 0.64)$, $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{13}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{13}-\mathrm{In}_{1-x} \mathrm{Ga}_{1+x}$ $\mathrm{O}_{3}(\mathrm{ZnO})_{13}(0.49 \leq x \leq 0.75)$, in which $\mathrm{InGaO}_{3}(\mathrm{ZnO})_{m}(m=1-13)$ is isostructural with $\mathrm{InFeO}_{3}(\mathrm{ZnO})_{m}$. [Hereafter, the phases of $\mathrm{InGaO}_{3}(\mathrm{ZnO}), \mathrm{InGaO}_{3}(\mathrm{ZnO})_{2}, \ldots$ will be defined as Phase I, Phase II, . . .] The solid solution ranges and lattice constants of (In $\left.\mathrm{GaO}_{3}\right)_{2} \mathrm{ZnO}$, Phase I, Phase II . . . Phase XIII are listed in Table III. The lattice constants of $\left(\mathrm{InGaO}_{3}\right)_{2} \mathrm{ZnO}$ or $\mathrm{InGaO}_{3}(\mathrm{ZnO})_{m}$ indicate that they are actually identical to the previously published data within experimental errors (5,9). In a process in which we established the present phase relations, we recognized the following items:
(1) the reaction rate in the formation of $\mathrm{InGaO}_{3}(\mathrm{ZnO})_{m}$ with $m=$ odd from $\mathrm{In}_{2} \mathrm{O}_{3}$, $\mathrm{Ga}_{2} \mathrm{O}_{3}$, and ZnO powders was faster than that in the phase with $m=$ even;
TABLE I
Mixing Ratio of the Starting Compounds ($\mathrm{In}_{2} \mathrm{O}_{3}, \mathrm{Ga}_{2} \mathrm{O}_{3}$, and ZnO), Heating Period, and Phases Obtained

$\mathrm{In}_{2} \mathrm{O}_{3}$	$\mathrm{Ga}_{2} \mathrm{O}_{3}$	ZnO	Days	Phases	$a(\mathrm{~nm})$	$c(\mathrm{~nm})$	$\mathrm{In}_{2} \mathrm{O}_{3}$	$\mathrm{Ga}_{2} \mathrm{O}_{3}$	ZnO	Days	Phases	$a(\mathrm{~nm})$	$c(\mathrm{~nm})$
1	1	1	$3+3$	$(\mathrm{InGaO})_{2}(\mathrm{ZnO})$	$0.3306(1)$	2.946(1)	1	0	1	$3+3$	$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3} \\ & \mathrm{III} \end{aligned}$	$\begin{array}{r} 1.011(1) \\ 0.3350(1) \end{array}$	4.246(1)
50	20	30	$3+3$	$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3} \\ & \mathrm{I} \\ & \left(\mathrm{InGaO}_{3}\right)_{2}(\mathrm{ZnO}) \end{aligned}$	$\begin{array}{r} 1.006(1) \\ 0.3289(1) \end{array}$ $0.3306(1)$	$\begin{aligned} & 2.599(1) \\ & 2.946(1) \end{aligned}$	3	2	5	3	1	$0.3316(1)$	$2.626(1)$
							1	1	2	$3+3$	I	$0.3296(1)$	$2.602(1)$
2	2	3	$3+4$		0.3289(1)	2.602(1)	23	27	50	$3+4$	I	0.3286(1)	2.601(1)
				$(\mathrm{InGaO})_{2}(\mathrm{ZnO})$	$0.3308(1)$	2.948(1)	1	1	3	$3+3$	$\begin{aligned} & \text { I } \\ & \text { II } \end{aligned}$	$\begin{aligned} & 0.3296(1) \\ & 0.3286(1) \end{aligned}$	$\begin{aligned} & 2.607(\mathrm{I}) \\ & 2.252(1) \end{aligned}$
19	5	12	$3+4$	$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3} \\ & \mathrm{I} \end{aligned}$	$\begin{array}{r} 1.009(1) \\ 0.3310(1) \end{array}$	2.620(1)	3	1	8	$4+4$	II	$0.3331(1)$	$2.285(1)$
3	1	4	$4+3$	$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3} \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & 1.011(1) \\ & 0.3328(1) \end{aligned}$	2.644(1)	1	1	4	$3+4$	II	0.3292(1)	$2.251(1)$
				11	$0.3315(1)$	2.270 (1)	3	5	16	$3+4$	II	$0.3264(1)$	2.260(1)
4	1	5	$3+3$	II	$0.3314(1)$	2.269(1)	1	1	5	$3+3$	II	$0.3290(1)$	2.253(1)
											III	0.3284 (1)	4.152(1)
7	1	8	$3+4$	$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3} \\ & \text { II } \end{aligned}$	$\begin{aligned} & 1.011(1) \\ & 0.3330(1) \end{aligned}$	$2.285(1)$	10	16	74	$3+3$	II	0.3264(1)	$2.257(1)$
											III	$0.3263(1)$	$4.167(1)$
7	1	16	$3+3$	$\underset{\text { II }}{\mathrm{In}_{2} \mathrm{O}_{3}}$	$1.011(1)$ $0.3343(1)$								
				III	$\begin{aligned} & 0.3343(1) \\ & 0.3330(1) \end{aligned}$	$\begin{aligned} & 2.297(1) \\ & 4.218(1) \end{aligned}$	1	0	3	$3+7$	III	$0.3351(1)$	4.248(1)
							3	1	12	3	III	0.3320(1)	4.203(1)
15	1	32	$3+3$	$\mathrm{In}_{2} \mathrm{O}_{3}$	$1.011(1)$								
				III	$0.3338(1)$	4.233(1)	1	1	6	4	III	0.3288(1)	$4.156(1)$
3	5	24	3	III	0.3263(1)	4.172(1)	1	1	10	3	V	0.3280(1)	5.713(1)

V	0.3261 (1)	5.726(1)
v	0.3241(1)	5.748(1)
V	$0.3300(1)$	$5.760(1)$
VI	$0.3296(1)$	4.358(1)
V	0.3277(1)	5.709(1)
VI	0.3275(2)	4.317(3)
VI	$0.3316(1)$	4.394(1)
VI	0.3296(1)	4.356(1)
VI	0.3277(2)	4.299(4)
VI	0.3259(1)	4.332(2)
VI	0.3241(1)	4.350(2)
VI	0.3223(2)	4.345(3)
D-ZnO	*	*
spinel	0.8329(1)	
VI	0.3229(1)	4.355(2)
D-ZnO	*	*
spinel	0.8333(1)	
VI	0.3224(2)	4.347(4)
D-ZnO	*	*
spinel	0.8329(1)	
IX	$0.3285(1)$	8.882(1)
IX	0.3270(1)	8.828(2)
IX	0.3256(1)	8.822(5)

TABLE I-Continued

$\mathrm{In}_{2} \mathrm{O}_{3}$	$\mathrm{Ga}_{2} \mathrm{O}_{3}$	ZnO	Days	Phases	$a(\mathrm{~nm})$	$c(\mathrm{~nm})$	$\mathrm{In}_{2} \mathrm{O}_{3}$	$\mathrm{Ga}_{2} \mathrm{O}_{3}$	ZnO	Days	Phases	$a(\mathrm{~nm})$	$c(\mathrm{~nm})$
1	1	14	4	VII	0.3276 (1)	7.279(1)							
3	5	56	$4+4+4$	VII	0.3257(1)	7.280(1)	1	3	36	$4+4+6$	IX	$0.3244(2)$	8.865(8)
							0	1	9	$4+3+4+4$	D-ZnO		*
1	3	28	$3+4$	VII	0.3243(1)	7.309(3)					spinel	*	
3	13	112	$5+5+5$	VII	0.3230(1)	$7.3000(3)$	1	0	10	$3+3+7$	X	*	6.545(57)
1	1	15	$4+4$	VII	0.3274(1)	7.273(1)	3	13	176	$5+5+5$	X	0.3235(2)	6.412(6)
				VIII	*	6.878					D-ZnO	*	
1	7	72	$4+3+4+7$	VII	$0.3235(1)$	7.308(3)	1	0	11	3	XI	$0.3292(1)$	10.49(1)
				D-ZnO									
							3	1	44	$3+4+6$	XI	0.3276(1)	10.43(1)
1	15	144	$5+5+5$	VII	0.3227(3)	7.307(9)							
				D-ZnO	*	*	1	1	22	$3+4+3$	XI	0.3266 (1)	10.38(1)
1	0	8	$3+3+3$	VIII	0.3304(1)	5.432(1)	1	3	44	$4+3+7$	XI	$0.3245(1)$	10.43(1)
3	1	32	4 \| 3	VIII	*	*	1	7	88	$4+7$	$\begin{aligned} & \text { IX } \\ & \text { D-ZnO } \end{aligned}$	0.3240(2)	8.860(7)
1	1	16	$4+3+4+3$	VIII	*	*							
3	13	144	$4+4+7+6$	$\begin{aligned} & \text { VIII } \\ & \text { D-ZnO } \end{aligned}$	${ }_{*}^{0.3238(1)}$	$5.384(3)$		15	208	$5+5+5$	XI	$0.3240(3)$	10.46(2)
											D-ZnO		
1	15	176	$5+5+5$	VIII	0.3238(3)	5.379(10)	1	7	104	$5+5+5$	$\begin{aligned} & \mathrm{XI} \\ & \mathrm{D}-\mathrm{ZnO} \end{aligned}$	$0.3240(2)$	$\underset{*}{10.42(1)}$
				D-ZnO	*	*							
1	0	9	3	IX	0.3299(1)	8.926 (1)	0	1	11	$4+3+4+7+6$	1-LnO	*	*
1	0	13	$3+7+3$	XIII	0.3284(1)	12.04(1)				$3+4$	spinel	0.8340(1)	
							1	49	50				
3	1	52	$4+4$	XIII	0.3270(2)	$12.00(1)$	0	1	1			0.8331(1)	
1	1	26	$4+4$	XIII	0.3258(1)	11.92(1)				$3+3$	spinel		
1	3	52	$3+4+7$	XIII	0.3245(1)	11.99(1)	16	26	58	$3+3$	I	0.3284(1)	$2.604(1)$
											$\begin{aligned} & \text { II } \\ & \text { spinel } \end{aligned}$	$\begin{aligned} & 0.3276(1) \\ & 0.8370(1) \end{aligned}$	2.255(1)
0	1	13	$3+4+7$			*							
				D-ZnO	*		9	31	60	$4+4$	$\begin{aligned} & \text { II } \\ & \text { spinel } \end{aligned}$	$\begin{aligned} & 0.3270(1) \\ & 0.8364(1) \end{aligned}$	2.258(1)
1	0	15	$7+7$	XV	$0.3284(1)$	13.63(1)							

0	1	19	$4+4+3$	D-ZnO	*	*	12	22	66	3:3	II	0.3264(1)	$2.261(1)$
											spinel	0.8358(1)	
1	0	20^{a}	1	XX	0.3271(1)	11.64(1)	1	3	8	$3+3$	II	0.3258(1)	2.262(1)
1	2	2	$5+4$	$\left(\mathrm{InGaO}_{3}\right)_{2}(\mathrm{ZnO})$	$0.3307(1)$	2.947(1)					III spinel	$\begin{aligned} & 0.3257(1) \\ & 0.8350(1) \end{aligned}$	4.173(1)
							6	28	66	$3+3$	III	0.3257(1)	4.175(1)
20	35	45	$3+3$	1	$0.3288(1)$	$2.600(1)$					spinel	0.8352(1)	
				$(\mathrm{InGaO})_{2}(\mathrm{ZnO})$	$0.3305(1)$	2.946(1)							
				spinel	0.8361 (1)		1	3	12	$4+3+5$	III	0.3242(1)	4.184(1)
											IV	$0.3234(2)$	3.308(2)
6	97	97	$3+3+3$	spinel	$0.8348(1)$						spinel	0.8339(1)	
1	50	49	4	spinel	0.8337(1)		4	23	73	$4+3$		0.3241(1)	$3.311(1)$
1	so	49	4	spinel	0.833 (1)						spinel	0.8340(1)	
1	4	5	$3+3$	$\begin{aligned} & \text { I } \\ & \text { spinel } \end{aligned}$	0.3286(1) $0.8366(1)$	2.601(1)							3.316(4)
				spinel	0.8366(1)		1	7	24	$3+4+7$		$\begin{aligned} & 0.3234(3) \\ & 0.3235(1) \end{aligned}$	$5.753(2)$
											spinel	0.8337(1)	
3	47	50	4	spinel	$0.8365(1)$								
							1	7	32	$4+4+3+4$		0.3229(1)	5.761(1)
2	48	50	3	spinel	0.8351 (1)						spinel	0.8334(1)	
1	7	40	$4+3$	VI	$0.3231(1)$	4.360(1)							
				spincl	$0.8335(1)$								
1	7	56	$3+4+3$	VI	$0.3231(2)$	4.356(4)							
				D-ZnO	+								
0	1	4	$4+3+3$	D-ZnO	*	*							
				spinel	0.8332 (1)								
0	1	7	$7+6$		*	*							
					$0.8332(1)$								
0	0	1	3	ZnO	0.3248(1)	0.5204(1)							

[^1]

Fig. 3. The lattice constant of the $\mathrm{In}_{2} \mathrm{O}_{3}$ phase which is in equilibrium with various phases: (1) $\mathrm{In}_{2} \mathrm{O}_{3}$ in a single phase state (cf. JCPDS: Card No. 6-416) (2) Phase III, (3) Phase I and Phase II, (4) Phase I, (5) Phase I and $\left(\mathrm{InGaO}_{3}\right)_{2} \mathrm{ZnO}$.
(2) the reaction rate in the formation of the phase in the part between $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$ and $\mathrm{InGaO}_{3}(\mathrm{ZnO})_{m}$ is faster than that in the part between $\mathrm{InGaO}_{3}(\mathrm{ZnO})_{m}$ and In_{1-x} $\mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$;
(3) the reaction rate in forming InGaO_{3} $(\mathrm{ZnO})_{m}$ gets slower with increasing m in In $\mathrm{GaO}_{3}(\mathrm{ZnO})_{m}$. We stopped our experiment at $m=13$; however, it is certain that In $\mathrm{GaO}_{3}(\mathrm{ZnO})_{m}(m \geq 14)$ will be formed if we heat the starting mixtures for a much longer period than in the present study. These three phenomena mentioned above could be ob-

Fig. 4. The relation between the Bragg's angle, 2θ (${ }^{\circ}$) of the 002 reflection of ZnO with wurtzite structure, and $\mathrm{Ga}_{2} \mathrm{O}_{3}$ concentration (mole $\%$) in the distorted wurtzite phase (using $\mathrm{CuK} \alpha$ radiation).

Fig. 5. X-ray powder diffraction data for a distorted wurtzite phase, $\mathrm{Zn}_{1-x} \mathrm{Ga}_{2 x} \mathrm{O}_{1+2 r}(x=0.093)$ which coexists with $\mathrm{Ga}_{2} \mathrm{ZnO}_{4}$ (spinel).
served in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Fe}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system also (2).

In the following we describe the characteristic features in the phase relations in Figs. 2A and 2B. In general, the features in

Fig. 6. The relation between the lattice constant and the concentration of $\mathrm{In}_{2} \mathrm{O}_{3}$ (mole $\%$) in the spinel phase at $1350^{\circ} \mathrm{C}$.

TABLE II
d-Spacings and Relative Intensities of "Distorted ZnO" Phase and Wurtzite(ZnO)

TABLE III
The Solid Solution Ranges of the Layered Phases, Lattice Constants, and Space Groups

	Kasper (3)		Cannard and Tilley (4)		Kimizuka et al. (5)				
Ptase	Temperature (${ }^{\circ} \mathrm{C}$) Heating period (hr) Crystal system	Lattice constants (um)	Temperature (${ }^{\circ} \mathrm{C}$) Heating period (day)	Lattice constant (niri)	Temperature (${ }^{\circ} \mathrm{C}$) Heating period (day) Space group	Lattice constants (nm)	$\begin{gathered} \left.\mathrm{In}_{2} \mathrm{O}_{\mathbf{\prime}} \mathrm{l} \mathrm{ZnO}\right)_{m} \\ \text { lattice } \\ \text { constants } \\ (\mathrm{nm}) \end{gathered}$	$\begin{gathered} \text { In } \mathrm{GaO}_{3}(\mathrm{ZnO})_{m} \\ \text { lattice } \\ \text { constants } \\ (\mathrm{nm}) \end{gathered}$	$\begin{gathered} \mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{m} \\ \text { lattice } \\ \text { constants } \\ \text { (nm) } \end{gathered}$
$(\mathrm{InGaO})_{3}(\mathrm{ZnO})$					$\begin{aligned} & 1450 \\ & 6 \\ & P 6_{3} / m m c \end{aligned}$	$\begin{aligned} & \left(\mathrm{InGaO}_{3}\right)(\mathrm{ZnO})^{a} \\ & a=0.3308 \\ & c=2.949 \end{aligned}$		$\begin{aligned} & \left(\mathrm{InGaO}_{3}\right)_{2}(\mathrm{ZnO}) \\ & a=0.3306(1) \\ & c=2.946(1) \end{aligned}$	
I					$\begin{array}{r} 1450 \\ 1 \\ R 3 m \end{array}$	$\begin{aligned} & \mathrm{InGaO}_{3}(\mathrm{ZnO}) \\ & a=0.3295(1) \\ & c=2.607(1) \end{aligned}$	$\begin{aligned} & \mathrm{In}_{1+\infty} \mathrm{Ga}_{1}, \mathrm{O}_{3}(\mathrm{ZnO})(x=0.33) \\ & a=0.3328(1) \\ & c=2.644(1) \end{aligned}$	$\begin{aligned} & \mathrm{InGaO}_{3}(\mathrm{ZnO}) \\ & a=0.3296(1) \\ & c=2.602(1) \end{aligned}$	$\begin{aligned} & \mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})(x=0.08) \\ & a=0.3286(1) \\ & c=2.601(1) \end{aligned}$
II	$\begin{array}{r} 1550 \\ 2 \\ \text { Hex. } \end{array}$	$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{2} \\ & a=0.3376(1) \\ & c=2.3154(10) \end{aligned}$			$\begin{gathered} 1300 \\ 5 \\ P 6_{3} / m m c \end{gathered}$	$\begin{aligned} & \mathrm{InGaO}_{3}\left(\mathrm{ZnO}_{2}\right)_{2} \\ & a=0.3292(1) \\ & c=2.252(1) \end{aligned}$	$\begin{aligned} & \mathrm{In}_{\mathrm{H}_{x}} \mathrm{Ga}_{1-\mathrm{K}} \mathrm{O}\left(\mathrm{Z}_{3} \mathrm{O}\right)_{2}(x=0.68) \\ & a=0.3343(1) \\ & c=2.297(1) \end{aligned}$	$\begin{aligned} & \mathrm{InGaO}_{3}\left(\mathrm{ZnO}_{2}\right)_{2} \\ & a=0.3292(1) \\ & c=2.251(1) \end{aligned}$	$\begin{aligned} & \mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}\left(\mathrm{ZnO}_{2}(x=0.32)\right. \\ & a=0.3258(1) \\ & c=2.262(1) \end{aligned}$
III	$\begin{gathered} 1200 \\ 12 \\ \text { Rhom. } \end{gathered}$	$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{3} \\ & a=0.335(1) \\ & c=4.2515(20) \end{aligned}$			$\begin{array}{r} 1450 \\ 4 \\ R 3 m \end{array}$	$\begin{aligned} & \mathrm{InGaO}_{3}(\mathrm{ZnO})_{3} \\ & a=0.3288(1) \\ & c=4.156(1) \end{aligned}$	$\begin{aligned} & \ln _{2} \mathrm{O}_{3}(\mathrm{ZnO})^{b} \\ & a=0.3351(1) \\ & c=4.248(1) \end{aligned}$	$\begin{aligned} & \operatorname{InGaO}\left(\mathrm{ZnO}_{3}\right)_{3} \\ & a=0.3288(1) \\ & c=4.156(1) \end{aligned}$	$\begin{aligned} & \ln _{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{3}(x=0.46) \\ & a=0.3242(1) \\ & c=4.184(1) \end{aligned}$
IV	$\begin{array}{r} 1200 \\ 50 \\ \text { Hex. } \end{array}$	$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{\mathrm{O}}(\mathrm{ZnO})_{4} \\ & a=0.3339(2) \\ & c=3.352(2) \end{aligned}$	$\begin{array}{r} 1100 \\ 3 \end{array}$	$\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{4}$	$\begin{gathered} 1450 \\ 6 \\ P 6_{3} / m m c \end{gathered}$	$\begin{aligned} & \mathrm{InGaO}_{3}(\mathrm{ZnO})_{4} \\ & a=0.3284(1) \\ & c=3.289(1) \end{aligned}$	$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3}\left(\mathrm{ZnO}_{4}{ }_{4}{ }^{b} 0.337(1)\right. \\ & \mathrm{c}=0.33(1) \\ & c=3.353(1) \end{aligned}$	$\begin{aligned} & \mathrm{InGaO}_{3}(\mathrm{ZnO})_{4} \\ & a=0.3284(1) \\ & c=3.289(1) \end{aligned}$	$\begin{aligned} & \mathrm{In}_{1-x} \mathrm{Ga}_{14} \mathrm{O}_{3}\left(\mathrm{ZnO}_{4}(x=0.54)\right. \\ & a=0.3234(3) \\ & c=3.316(4) \end{aligned}$
v	$\begin{aligned} & 1050 \\ & 100 \\ & \text { Rhom. } \end{aligned}$	$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3}\left(\mathrm{ZnO}_{5}\right)_{5} \\ & a=0.3327(1) \\ & c=5.814420) \end{aligned}$	$\begin{array}{r} 1100 \\ 3 \end{array}$	$\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{5}$	$\begin{array}{r} 1450 \\ 8 \\ R 3 m \end{array}$	$\begin{aligned} & \mathrm{InGaO}_{3}(\mathrm{ZnO}) \mathbf{5} \\ & a=0.3280(1) \\ & c=5.714(1) \end{aligned}$	$\begin{aligned} & \left.\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})\right)^{b} \\ & a=0.3226(1) \\ & c=5.810(1) \end{aligned}$	$\begin{aligned} & \mathrm{InGaO}_{3}(\mathrm{ZnO})_{5} \\ & a=0.3280(1) \\ & c-5.713(1) \end{aligned}$	$\begin{aligned} & \mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}\left(\mathrm{ZnO}_{5}\right)_{5}(0.68<x<0.72) \\ & a=c \\ & c=r \end{aligned}$

VI			$\begin{array}{r} 1100 \\ 3 \end{array}$	$\mathbf{l n}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{6}$	$\begin{gathered} 1450 \\ 10 \\ P 6_{3} / \mathrm{mmc} \end{gathered}$	$\begin{aligned} & \mathrm{InGaO}_{3}(\mathrm{ZnO})_{6} \\ & a=0.3275(1) \\ & c=4.326(1) \end{aligned}$	$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{6}{ }^{b} \\ & a=0.3316(1) \\ & c=4.394(1) \end{aligned}$	$\begin{aligned} & \mathrm{InGaO}_{3}(\mathrm{ZnO})_{6} \\ & a=0.3277(2) \\ & c=4.299(4) \end{aligned}$	$\begin{aligned} & \mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{6}(0.68<x<0.79) \\ & a=0.3229(1) \\ & c=4.355(2) \end{aligned}$
VII	1310 2 Rhom.	$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{7} \\ & a=0.313(1) \\ & c=7.362(4) \end{aligned}$	$\begin{array}{r} 1100 \\ 3 \end{array}$	$\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{7}$	$\begin{array}{r} 1450 \\ 2 \\ R \overline{3} m \end{array}$	$\begin{aligned} & \operatorname{lnGaO}_{3}(\mathrm{ZnO})_{7} \\ & a=0.3274(1) \\ & c=7.274(1) \end{aligned}$	$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{7}^{b} \\ & a=0.3310(1) \\ & c=7.370(1) \end{aligned}$	$\begin{aligned} & \mathrm{InGaO}_{3}(\mathrm{ZnO})_{7}^{7} \\ & a=0.3276(1) \\ & c=7.279(1) \end{aligned}$	$\begin{aligned} & \mathrm{In}_{\mathrm{i}-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{7}(0.70<x<0.74) \\ & a=c \\ & c=c \end{aligned}$
VIII							$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{8}{ }^{b} \\ & a=0.3304(1) \\ & c=5.432(1) \end{aligned}$	$\begin{aligned} & \mathrm{InGaO}_{3}(\mathrm{ZnO})_{8} \\ & a={ }_{8} \\ & c=c \end{aligned}$	$\begin{aligned} & \mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{8}(0.60<x<0.68) \\ & a=c \\ & c=c \end{aligned}$
IX			$\begin{array}{r} 1100 \\ 7 \end{array}$	$\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{9}$			$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{9}{ }^{b} \\ & a=0.3299(1) \\ & c=8.926(1) \end{aligned}$	$\begin{aligned} & \mathrm{InGaO}_{3}\left(\mathrm{ZnO}_{\mathrm{g}}^{9}\right. \\ & a=0.3270(1) \\ & c=8.828(2) \end{aligned}$	$\begin{aligned} & \mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{9}(0.56<x<0.72) \\ & a=r \\ & c=r \end{aligned}$
X									$\begin{aligned} & \mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{10}(0.47<x<0.67) \\ & a=c \\ & c=c \end{aligned}$
XI			$\begin{array}{r} 1100 \\ 3 \end{array}$	$\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{11}$			$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{11}{ }^{b}{ }^{b}=0.3292(1) \\ & c=10.49(1) \end{aligned}$	$\begin{aligned} & \mathrm{InGaO}_{3}\left(\mathrm{ZnO}_{\mathrm{n}}\right)_{11} \\ & a-0.326_{6}(1) \\ & c=10.38(1) \end{aligned}$	$\begin{aligned} & \mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{11}(0.57<x<0.64) \\ & a-c \\ & c=r \end{aligned}$
XII									$\begin{aligned} & \mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{12}(0<x<0.64) \\ & a=c \\ & c=c \end{aligned}$
XIII							$\begin{aligned} & \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{13}{ }^{h}{ }^{h}=0.3284(1) \\ & c=0=12.04(1) \end{aligned}$	$\begin{aligned} & \mathrm{InGaO}_{3}(\mathrm{ZnO})_{13} \\ & a=0.3258(1) \\ & c=11.92(1) \end{aligned}$	$\begin{aligned} & \mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{13}(0.49<x<0.75) \\ & a=c \\ & c=c \end{aligned}$

[^2]the phase relations in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Ga}_{2} \mathrm{Zn}$ $\mathrm{O}_{4}-\mathrm{ZnO}$ system are very similar to those in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Fe}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system except the existences of the $\left(\mathrm{InGaO}_{3}\right)_{2} \mathrm{ZnO}$ phase and the region of a distorted wurtzite phase. (1) $\mathrm{In}_{2} \mathrm{O}_{3}$ is in equilibrium with (In $\left.\mathrm{GaO}_{3}\right)_{2} \mathrm{ZnO}$, Phase I, Phase II, and Phase III. (2) $\left(\mathrm{InGaO}_{3}\right)_{2} \mathrm{ZnO}$ is in equilibrium with $\mathrm{In}_{2} \mathrm{O}_{3}$, spinel, and Phase I. (3) The spinel phase is in equilibrium with $\left(\mathrm{InGaO}_{3}\right)_{2} \mathrm{ZnO}$, Phase I, Phase II, Phase III, Phase IV, Phase V, and Phase VI and the distorted wurtzite phase. The solid solution range of the spinel phase from $\mathrm{Ga}_{2} \mathrm{ZnO}_{4}$ to the direction of Phase I and the lattice constants are shown in Fig. 6. The width of the solid solution range ($x=0.128$) of the spinel in the direction of Phase I is narrower than that (x $=0.40$) in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Fe}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system. No spinel phase with a cation excess ratio more than a cation : anion ratio $=3: 4$ was detected. (4) Phase I is in equilibrium with $\mathrm{In}_{2} \mathrm{O}_{3}$, $\left(\mathrm{InGaO}_{3}\right)_{2} \mathrm{ZnO}$, Phase II, and the spinel phase. (5) Phase II is in equilibrium with $\mathrm{In}_{2} \mathrm{O}_{3}$, Phase I, Phase III, and the spinel phase. (6) Phase III is in equilibrium with $\mathrm{In}_{2} \mathrm{O}_{3}$, Phase II, Phase IV, and the spinel phase. (7) Each of the higher order Phase W ($W=$ IV or V) is in equilibrium with the spinel phase and both Phase ($W-1$) and Phase ($W+1$). (8) Phase VI is in equilibrium with Phase V, Phase VII, spinel, and distorted wurtzite, and Phase Y (VII $<Y<$ XIII) is in equilibrium with Phase ($Y-1$), Phase ($Y+\mathrm{I}$), and the distorted wurtzite phase. (9) The distorted wurtzite phase is in equilibrium with the spinel, Phase VI, Phase VII, Phase VIII, Phase IX, Phase X, Phase XI, Phase XII, and Phase XIII. In the case of the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Fe}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system at $1350^{\circ} \mathrm{C}$, there exist the solid solution ranges of In_{2} $\mathrm{O}_{3}(\mathrm{ZnO})_{m}-\mathrm{InFeO}_{3}(\mathrm{ZnO})_{m}-\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}(m$ >11); however, no full solid solution ranges of $\mathrm{ln}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}-\mathrm{InGaO} 3(\mathrm{ZnO})_{m}-\mathrm{Ga}_{2} \mathrm{O}_{3}(\mathrm{Zn}$ $\mathrm{O})_{m}(m \leq 13)$ exist in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Ga}_{2}$ $\mathrm{ZnO}_{4}-\mathrm{ZnO}$ system. If we think that Ga (III) has a tendency to take the tetrahedral site
more favorably than Fe (III) does in the oxide compounds, and Fe (III) can occupy positions both of octahedral and tetrahedral sites, it is reasonable that there are the distorted ZnO phase, $\mathrm{Zn}_{1-x} \mathrm{Ga}_{2 x} \mathrm{O}_{1+2 x}$, in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Ga}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ $(\mathrm{ZnO})_{m}$ in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Fe}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system.

We heated two series of mixtures: one is $\mathrm{In}_{2} \mathrm{O}_{3}: \mathrm{Ga}_{2} \mathrm{O}_{3}: \mathrm{ZnO}=2: 0: 98,1: 1: 98$, and $0: 2: 98$ at $1550^{\circ} \mathrm{C}$ for 2 days, respectively, and the other is $1: 0: 99$ at $1350^{\circ} \mathrm{C}$ for $(4+$ 7) days, $0.5: 0.5: 99$ at $1550^{\circ} \mathrm{C}$ for 2 days, and $0: 1: 99$ at $1350^{\circ} \mathrm{C}$ for $(4+7)$ days, respectively. We then obtained two kinds of solid solutions, which could be considered to belong to distorted wurtzite structures or $\mathrm{InGaO}_{3}(\mathrm{ZnO})_{m}$ types of homologous structures. When m is an extremely high value, a distorted wurtzite structure and a homologous structure may become identical; however, we think the details in this region are still open to question.

2. Crystal Structural Consideration for the Homologous Solid Solutions of $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{\mathrm{m}}-\mathrm{InGaO} \mathrm{O}_{3}(\mathrm{ZnO})_{\mathrm{m}}-\mathrm{In}_{1-x} \mathrm{Ga} a_{1+\mathrm{x}}$ $\mathrm{O}_{3}(\mathrm{ZnO})_{\mathrm{m}}(\mathrm{m}=$ Integer $)$

Powder samples obtained were supplied for SEM observation. We could see clear plate-like crystals of the solid solutions, $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{m}-\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}$ $(\mathrm{ZnO})_{m}$. The hexagonal lattice constants of the homologous solid solutions of the In_{2} $\mathrm{O}_{3}(\mathrm{ZnO})_{m}-\mathrm{InGaO}_{3}(\mathrm{ZnO})_{m}-\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}$ $(\mathrm{ZnO})_{m}$ are shown in Table III and Fig. 7. Since $\mathrm{InFeO}_{3}(\mathrm{ZnO})_{m}$ can be considered to be composed of one $\mathrm{InO}_{1.5}$ layer, one $(\mathrm{FeZn}) \mathrm{O}_{2.5}$ layer, and $(m-1) \mathrm{ZnO}$ layers as indicated in our previous papers (2,5), we can apply this crystal structural model to the $\mathrm{InGaO}_{3}(\mathrm{ZnO})_{m}$ compounds and their solid solutions, and calculate the thickness of the layers composed. From the dependence of ($C_{\text {obsd }} / Z$) upon ($m-1$) (See Fig. 8.), we can determine the thickness of the ZnO layer. We show the thickness of the

FIG. 7. The hexagonal lattice constants (a and c) and the unit cell volumes (V) of the layered phases in the system $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}-\mathrm{Ga}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$ (A) Phase I, (B) Phase II, (C) Phase III, (D) Phase IV, (E) Phase V, (F) Phase VI, (G) Phase VII, (H) Phase VIII, (I) Phase IX, (J) Phase XI, and (K) Phase XIII.

ZnO layer and each of the thicknesses of the $\mathrm{InO}_{1.5}$ layer and the $(\mathrm{In} \mathrm{Zn}) \mathrm{O}_{2.5}$ layer, the $\mathrm{InO}_{1.5}$ layer and the $\left(\mathrm{In}_{0.5} \mathrm{Ga}_{0.5} \mathrm{Zn}\right) \mathrm{O}_{2.5}$ layer, the $\mathrm{InO}_{1.5}$ layer and the $(\mathrm{GaZn}) \mathrm{O}_{2.5}$ layer, the $\left(\mathrm{In}_{0.75} \mathrm{Ga}_{0.25}\right) \mathrm{O}_{1.5}$ layer and the $(\mathrm{GaZn}) \mathrm{O}_{2.5}$
layer, and the $\left(\mathrm{In}_{0.5} \mathrm{Ga}_{0.5}\right) \mathrm{O}_{1.5}$ layer and the $(\mathrm{GaZn}) \mathrm{O}_{2.5}$ layer in Table IV. For calculating each thickness of the above layers, we considered that each compound actually consists of the following constituent parts:

Fig.7-Continued
$\begin{gathered}\mathrm{In}_{2} \mathrm{O}_{3}(\mathbf{7 n O})_{m} \\ \mathrm{InO} \mathrm{O}_{1.5} \\ +(\mathrm{InZn}) \mathrm{O}_{2.5}\end{gathered}+(m-1) \mathrm{ZnO} \quad \begin{gathered}\mathrm{In}_{0.50} \mathrm{Ga}_{1.50} \mathrm{O}_{3}\left(\mathrm{ZnO}_{n}\right)_{m} \\ \left(\mathrm{In}_{0.50} \mathrm{Ga}_{0.50} \mathrm{O}_{1.5}+(\mathrm{GaZn}) \mathrm{O}_{2.5}+(m-1) \mathrm{ZnO} .\right.\end{gathered}$
$\mathrm{In}_{1.5} \mathrm{Ga}_{0.5} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$
$\mathrm{InO}_{1.5}+\left(\mathrm{In}_{0.5} \mathrm{Ga}_{0.5} \mathrm{Zn}\right) \mathrm{O}_{2.5}+(m-1) \mathrm{ZnO} \quad$ Note that $\frac{1}{2} c(c=0.5207(\mathrm{~nm}))$ is equal to
$\mathrm{InGaO}_{3}(\mathrm{ZnO})_{m}$
$\mathrm{InO}_{1.5}+(\mathrm{GaZn}) \mathrm{O}_{2.5}+(m-1) \mathrm{ZnO}$
$\mathrm{In}_{0.75} \mathrm{Ga}_{1.25} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$
$\left(\mathrm{In}_{0.75} \mathrm{Ga}_{0.25}\right) \mathrm{O}_{1.5}+(\mathrm{GaZn}) \mathrm{O}_{2.5}+(m-1) \mathrm{ZnO}$
0.2604 (nm), in which c means the lattice constant of ZnO (wurtzite structure) (II). Kimizuka et al. (12) summarized the lattice

Fig.7-Continued
constants of $R \mathrm{Fe}_{2} \mathrm{O}_{4}(R: \mathrm{Y}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}$, and Lu), which is isostructural with In $\mathrm{FeO}_{3}(\mathrm{ZnO})$. The value of a increases but the value of c decreases with an increase in the ionic radius of the constituent R cation in $R \mathrm{Fe}_{2} \mathrm{O}_{4}$. With an increase in the concentration of Ga (III) with a smaller ionic radius than $\operatorname{In}(\mathrm{III})$, the value of a decreases but the value of c increases in the region between
$\mathrm{InGaO}_{3}(\mathrm{ZnO})_{m}$ and $\mathrm{In}_{1-x} \mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$. We can infer that Ga (III) occupies the cation position in the $\mathrm{InO}_{1.5}$ layer. In the region between $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$ and $\operatorname{InGaO} 3(\mathrm{ZnO})_{m}$, the Ga (III) occupies the In site in the (In $\mathrm{Zn}) \mathrm{O}_{2.5}$ layer, and values of both a and c decrease with an increase in the $\mathrm{Ga}($ III $)$ concentration. In Fig. 9, we summarized the thickness of the ZnO layer and $(U+W)$

Fig. 8. The relation between $C_{\text {obsd }} / Z$ and ($m-1$) in $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}, \quad \mathrm{In}_{1.5} \mathrm{Ga}_{0.5} \mathrm{O}_{3}(\mathrm{ZnO})_{m}, \quad \mathrm{InGaO}_{3}(\mathrm{ZnO})_{m}$, $\mathrm{In}_{0.75} \mathrm{Ga}_{1.25} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$, or $\mathrm{In}_{0.5} \mathrm{Ga}_{1.5}(\mathrm{ZnO})_{m}$. $C_{\text {obsd }}(\mathrm{nm})$, the observed hexagonal lattice constant; Z, numbers of a molecular unit in a unit cell: $Z=3$ for $m=$ odd, Z $=2$ for $m=$ even. $\Delta, \mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m} ; \square, \mathrm{In}_{\mathrm{i} .5} \mathrm{Ga}_{0.5} \mathrm{O}_{3}(\mathrm{Z}$ $\mathrm{nO})_{m} ; \mathrm{InGaO}_{3}(\mathrm{ZnO})_{m} ; O, \mathrm{In}_{0.75} \mathrm{Ga}_{1.25} \mathrm{O}_{3}(\mathrm{ZnO})_{m} ; \square$, $\mathrm{In}_{0.5} \mathrm{Ga}_{1.5} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$.
layer estimated from Fig. 8. In the whole range between $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$ and In_{1-x} $\mathrm{Ga}_{1+x} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$, we can see a constant thickness of the ZnO layer and a reasonable change in the thickness of the $(U+W)$ layer. The crystal structures of $\mathrm{LuFeO}_{3}(\mathrm{Z}$ $n O)_{m}(m=1,4,5$, and 6$)$ determined by

TABLE IV

The Thickness of the Constituent Layers in the Solid Solutions of $\mathrm{InGaO}_{3}(\mathrm{ZnO})_{m}$
$\left.\begin{array}{lll}\hline & & \begin{array}{l}\text { Thickness } \\ \text { of the }\end{array} \\ \text { Constituent } \\ \text { layer (nm) }\end{array}\right]$

Fig. 9. The relation between the thickness of the ZnO layer or the $(U+W)$ layer, in the system $\mathrm{In}_{2} \mathrm{O}_{3}(\mathrm{Z}$ $\mathrm{nO})_{m}-\mathrm{Ga}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$, in which U or W means as follows: $U, \mathrm{InO}_{1.5},\left(\mathrm{In}_{0.75} \mathrm{Ga}_{0.25}\right) \mathrm{O}_{1.5}$, or $\left(\mathrm{In}_{0.5} \mathrm{Ga}_{0.5}\right) \mathrm{O}_{1.5}$ layer; W, $(\mathrm{InZn}) \mathrm{O}_{2.5},\left(\mathrm{In}_{0.5} \mathrm{Ga}_{0.5} \mathrm{Zn}\right) \mathrm{O}_{2.5}$ or $(\mathrm{GaZn}) \mathrm{O}_{2.5}$ layer.
a single crystal, which are thought to be isostructural with $\mathrm{InFeO}_{3}(\mathrm{ZnO})_{m}$, support our present hypothesis of the layered structural models for the solid solutions of homologous phases, $\mathrm{InFeO}_{3}(\mathrm{ZnO})_{m}$. The lattice constant, a, versus m is shown in Fig. 10. All of the a values approach $a=$

Fig. 10. The relation between a and m in $\mathrm{In}_{2} \mathrm{O}_{3}$ $(\mathrm{ZnO})_{m}, \quad \mathrm{In}_{1.5} \mathrm{Ga}_{0.5} \mathrm{O}_{3}(\mathrm{ZnO})_{m}, \quad \operatorname{InGaO_{3}}(\mathrm{ZnO})_{m}, \mathrm{In}_{0.75}$ $\mathrm{Ga}_{1.25} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$, or $\mathrm{In}_{0.5} \mathrm{Ga}_{1.5} \mathrm{O}_{3}(\mathrm{ZnO})_{m}$.
$0.3249(\mathrm{~nm})$, the lattice constant of wurtzite, with increases in m (11).

The following conclusions are derived from the comparison between the phase relations in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Ga}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system and those in the $\mathrm{In}_{2} \mathrm{O}_{3}-\mathrm{Fe}_{2} \mathrm{ZnO}_{4}-\mathrm{ZnO}$ system at $1350^{\circ} \mathrm{C}$. They are very similar to each other except for a few features: (1) (InGa $\left.\mathrm{O}_{3}\right)_{2} \mathrm{ZnO}$ with $\mathrm{Yb}_{2} \mathrm{Fe}_{3} \mathrm{O}_{7}$-type structure exists, but no $\left(\mathrm{InFeO}_{3}\right)_{2} \mathrm{ZnO}$ exists at $1350^{\circ} \mathrm{C}$. (2) The solid solution range of the spinel phase of $\mathrm{Fe}_{2-x} \mathrm{In}_{x} \mathrm{ZnO}_{4}(x=0.40 \pm 0.02)(2)$ is much wider than that of Ga_{2-x} $\mathrm{In}_{x} \mathrm{ZnO}_{4}(x=0.128(4))$. Since both Ga_{2} ZnO_{4} and $\mathrm{Fe}_{2} \mathrm{ZnO}_{4}$ belong to a normal spinel (13) and the lattice constant of $\mathrm{Ga}_{2} \mathrm{ZnO}_{4}$ (a $=0.8331(1) \mathrm{nm})$ is smaller than that of $\mathrm{Fe}_{2} \mathrm{ZnO}_{4}(a=0.8441(1) \mathrm{nm})(2)$, we can conclude that it is more difficult for the $\operatorname{In}(\mathrm{III})$ ion to occupy the Ga position in $\mathrm{Ga}_{2} \mathrm{ZnO}_{4}$ than the Fe position in $\mathrm{Fe}_{2} \mathrm{ZnO}_{4}$ (14). (3) The solid solutions of both $\mathrm{InFeO}_{3}(\mathrm{ZnO})_{m}$ and $\mathrm{InGaO}_{3}(\mathrm{ZnO})_{m}$ are isostructural, and composed of one $\mathrm{InO}_{1.5}$ layer, one (Fe or $\mathrm{Ga}, \mathrm{Zn}) \mathrm{O}_{2.5}$ layer and $(m-1) \mathrm{ZnO}$ layers. Each range of the solid solutions of In $\mathrm{GaO}_{3}(\mathrm{ZnO})_{m}$ is comparable to that of In $\mathrm{FeO}_{3}(\mathrm{ZnO})_{m}(1 \leq m \leq 7)$. (4) In the $\mathrm{Ga}_{2} \mathrm{O}_{3}-\mathrm{ZnO}$ system, there is a solid solution range of wurtzite, $\mathrm{Zn}_{1-x} \mathrm{Ga}_{2 x} \mathrm{O}_{1+2 x}(x=$ $0-0.094)$; however, $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}(m \geq 12)$ exists in the $\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{ZnO}$ system. The ranges of the solid solutions of $\mathrm{InGaO}_{3}(\mathrm{ZnO})_{m}(7 \leq$ $m \leq 13$) do not reach $x=1$ in $\operatorname{In}_{1-x} \mathrm{Ga}_{1+x}$. $\mathrm{O}_{3}(\mathrm{ZnO})_{m}$. These features are derived from the well-known experimental data reported so far that Ga (III) occupies tetrahedral sites
more favorably than Fe does in the oxides, and Fe (III) takes both tetrahedral and octahedral sites.

Acknowledgments

The authors express their sincere thanks to Dr. M. Isobe and Dr. M. Onoda (NIRIM) for their helpful discussion, and Mr. T. Tsutsumi (NIRIM) for his SEM observation.

References

1. N. Kimizuka and E. Takayama, J. Solid State Chem. 53, 217 (1984).
2. M. Nakamura, N. Kimizuka, and T. Mohri, J. Solid State Chem. 86, 16 (1990).
3. H. KASPER, Z. anorg. allg. Chem. 349, 113 (1967).
4. P. J. Cannard and R. J. D. Tilley, J. Solid State Chem. 73, 418 (1988).
5. N. Kimizuka, T. Mohri, Y. Matsui, and K. Siratori, J. Solid State Chem. 74, 98 (1988).
6. K. Kato, I. Kawada, N. Kimizuka, and T. Katsura, Z. Kristallogr. 141, 314 (1975).
7. M. Isobe, N. Kimizuka, M. Nakamura, and T. Mohri, Acta Crystallogr. Sect. C, in press (1991).
8. N. Kimizuka and T. Mohri, J. Solid State Chem. 78, 98 (1989).
9. N. Kimizuka and T. Mohri, J. Solid State Chem. 60, 382 (1985).
10. K. Kato, I. Kawada, N. Kimizuka, I. Shindo, and T. Katsura, Z. Kristallogr. 143, 278 (1976).
11. S. C. Abrahams and J. C. Bernstein, Acta Crystallogr. Sect. B 25, 1233 (1969).
12. N. Kimizuka, E. Takayama-Muromachi, and K. Siratori, "Hand-Book on the Physics and Chemistry of Rare Earths," (K. A. Gschneider, Jr., and L. Eyring, Eds.), Vol. 13, Ch. 90, p. 283, North-Holland, Amsterdam (1990).
13. R. J. Hill, J. R. Craig, and G. V. Gibbs, Phys. Chem. Miner. 4, 317 (1979).
14. R. D. Shannon and C. T. Prewitte, Acta Crystallogr. Sect. B 25, 925 (1969).
15. M. Isobe, private communication (1990).

[^0]: * To whom correspondence should be addressed.

[^1]: Note. The lattice constants replaced with asterisks could not be determined.
 ${ }_{a}$ The mixture was heated at $1550^{\circ} \mathrm{C}$,

[^2]: Note. All of the lattice constants are given in the hexagonal crystal system. Hex., hexagonal; Rhom., rhombic
 Ref. (9).
 The lattice constants of $\ln _{2} \mathrm{O}_{3}(\mathrm{ZnO})_{m}(m>3)$ are cited from Ref. (2).
 ${ }^{c}$ The lattice constants could not be determined.

